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ABSTRACT 

EXPLORING FUNDAMENTAL TURBULENT 
PHYSICS USING DIRECT NUMERICAL SIMULATION 

 
MAY 2009 

 
MICHAEL A NILSSON 

 
B.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
 

Directed by: Professor J. Blair Perot 
 
 

It has been shown in many studies that turbulent flows are highly dependent on 

their initial conditions.  This thesis explores turbulent flow using direct numerical 

simulation (DNS) in a variety of situations, and culminates in the development of 

physically realizable initial conditions.  The reaction of isotropic homogeneous 

turbulent flow to the instantaneous insertion of a wall is investigated using two-point 

correlations.  A model with which to predict the behavior of the two-point correlations 

is also proposed.  The proposed model utilizes a reflection technique that with a linear 

operation, it accurately predicts the behavior of the non-linear two point correlations.  

The model works exceedingly well for correlations involving wall-perpendicular 

velocities, but does not predict correlations involving only wall-parallel velocities as 

well.  A vorticity approach is covered, in an effort to highlight which parts of the 

correlation decomposition are important to the prediction of the correlations after wall 

imposition.  The vorticity study also helps highlight why the proposed linear model 

predicts the flow. The impact of the initial conditions on axisymmetric contraction flow 

of turbulent flow is examined, and as a consequence new initial conditions are 
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developed based off of a physically realizable flow condition.  The development of the 

new-initial conditions and the resulting fields are covered, as well as a study on the 

value of the turbulent decay exponent associated with decay of isotropic turbulent 

velocity fields.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction  

Turbulence is a phenomena that has intrigued people for years.  It can be seen in 

many daily observable events, from atmospheric events, down to pouring a glass of 

water. However, despite years of study, turbulence remains a largely unsolved problem.  

Much effort and research has gone into developing a theory behind turbulence.  While 

many methods and schools of thought have been developed, the ideas and concepts 

discussed in this thesis concern the direct simulation of turbulence using numerical 

methods, how turbulence reacts with the presence of a wall imposed on a very small 

timescale, low Reynolds number flow behavior, and the physically realizable 

development of turbulent initial conditions. 

1.2 Assumptions 

In the natural world, many different types of turbulent flows are witnessed and 

created.  Due to the complexity of their nature, developing an understanding of every 

flow imaginable would be near impossible.  A simpler and more manageable approach 

is to study a simple form of turbulence.  For this thesis, the main area of focus deals 

with understanding homogeneous isotropic turbulence.  A visualization of a turbulent 

field is shown in figure 1-1. 
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Isotropic homogenous turbulence is one of the simplest types of turbulent flows 

for academic study.  Much of turbulence theory is based on and derived from the study 

of this flow[1].  Isotropy is defined as being statistically similar in any direction.  

Homogenous turbulence means that fluctuating velocities in the field are statistically 

not a function of position.  To be statistically homogeneous is to have any statistics be 

identical over any sampling of the domain, or a shift in position.  It is relatively difficult 

to create experimental turbulent flows that are truly isotropic and homogenous, though 

wind tunnels approximate this condition reasonably well. 

 
Figure 1-1: U-velocity of peak magnitude of 30m/s contours in an X-Y Slice 

through a 256 x 256 x 512 mesh turbulent isotropic velocity field. 

A main concept underlying turbulent flows is that there are multiple length 

scales and time scales involved.  These multiple length and timescales are derived from 

 2 
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the concept that turbulence is comprised of many different eddies, and not just random 

motion.  While seemingly random in nature, these varied eddies and their motion 

directly affect the motion of the fluid around it, and thus there can be considered 

structure to turbulence.  This structure can be seen in the two-point correlations detailed 

later in this and subsequent chapters.  If turbulence was characteristically random, the 

two-point correlations would be delta functions. 

Generally, turbulent flows exist at high Reynolds numbers, which allow certain 

assumptions to be made designed to simplify the complexity that a turbulent flow 

exhibits.  Many of the fundamental hypotheses that govern many models and 

understanding of turbulence were quantified by Kolmogorov, and outlined concisely by 

Pope[1].  Essentially, the result of applying the Kolmogorov hypotheses, is to reduce 

the complexity of the small scale energy dissipation, allowing for it to be considered 

statistically isotropic, and dependent only on the kinematic viscosity, ν , and the 

dissipation rate, ε .   Furthermore, this theory assumes that only the small scale eddies 

are affected by the viscosity, and that energy transfer from large scales to smaller scales 

occurs with no real penalty either way.  In three-dimensional turbulence, then energy 

transfer predominantly cascades from larger to smaller structures, and is assumed to be 

solely a function of the dissipation rate. 

The idea of energy flowing from one length scale to another gives rise to the 

concept of a turbulent energy cascade.  It is often desirable to examine the energy 

spectrum because it is a simpler than examining the energy in physical space.  In 

creating either a velocity spectra or energy spectra from a standard space field of 

turbulence, the positional dependence of the velocity or energy is lost, thus creating a 

 3 
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simpler description of the desired information.  The energy of the system in Fourier 

space, in itself, leads to some key concepts in turbulence, such as quantification of the 

energy cascade and dissipation. 

 
Figure 1 – 2: Idealized representation of a 3-D turbulent energy spectrum (black) 
with a -5/3 slope line (red).  The energy spectrum tapers off to the inverse of the 

Kolmogorov lengthscale. 

Figure 1-2 shows a typical energy spectrum of turbulent energy decay.  The 

small wave numbers, on the left of the figure, contain the most energy, and represent the 

energy contained in the large eddies.  The energy decays as the wave number increases, 

which describes the transfer of energy to smaller and smaller scales, down to the 

Kolmogorov length scale.  For moderate Reynolds numbers, the energy tends to be less 

linear in the inertial subrange, and only a small portion of the spectra has a -5/3 slope. 
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1.3 Direct Numerical Simulations 

Turbulent flow is chaotic, and therefore imitating a turbulent flow in nature 

identically with another turbulent flow is near impossible.  The complexity and 

variation in scales with which the turbulent structures develop are mystifying to watch, 

and incredibly difficult to simulate or recreate.  In laboratories, methods have been 

developed to create flows which are turbulent in nature through various techniques.  

Furthermore, with the advent of the computing age, simulations of turbulent flows have 

been created using computers and have been explored in the more recent past.   

As with reproducing phenomena in a laboratory, there are always limitations to 

what can be done with computer simulations.  As much as scientists and researchers 

would love to resolve flows down to the finest level, the computer limits the possible 

resolution achievable because of hardware and software limitations.  There is a trade off 

between the largest scale of a system that is being examined, and the smallest possible 

resolution that the system can compute.  There are many simulation techniques that 

have been developed to compute turbulence at any scale of resolution desired.  Some 

are designed to reduce the complexity and computational cost.  Possible simulation 

techniques range from direct numerical simulations (resolving all scales), to large eddy 

simulations, to Reynolds averaged Navier-Stokes simulations.  Each approach or 

simulation method resolves details of the flow field and eddy motion to a certain extent, 

and then includes modeling terms for everything else it doesn't resolve.  

The scope of this research lies in the direct numerical simulation (DNS) regime.  

DNS is direct simulation of fluid and it is governed by the full Navier-Stokes equations.  

In solving numerically the Navier-Stokes equations, this method directly resolves small 

 5 
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scale eddy characteristics and dissipation.  It allows for full simulation of a flow field, 

with no modeling involved.  This resolution carries a cost, and that is the immense 

computational time and computer memory required for carrying out these computations. 

1.4 Initial Conditions 

Simulations of decaying turbulence are dependent on the initial conditions used.  

Initial conditions to turbulent simulations are extremely important to the output of the 

simulation.  There are many different approaches to the creation of initial conditions, 

covered briefly here. 

As turbulence is seemingly random, the most basic and arguably most incorrect 

method for creation of a turbulent field is to assign random velocity values to points in 

space.  The fundamental issue with this method is that it is not turbulence.  It lacks the 

large scale structures that drive turbulence, and that contain most of the energy that 

ultimately passes down the energy cascade. When such a field is allowed to decay in 

time, it dies quickly due to the overwhelming viscous forces at small scales.  The field 

is dominated by the small scale dissipation, and would be characteristic of the right side 

of the typical energy spectrum shown in figure 1-2. 

A more technically sound approach to generating a turbulent initial condition is 

by forcing a pre-determined spectrum onto the velocity field.  This would, by design, 

put the required amount of energy into the field that would then return an energy 

spectrum characteristic of a turbulent field.  While this is approach is more 

fundamentally sound, the flow field itself contains no large scale structures, just large 

scale energy.  The lack of large scale structures in a physical field tends to not behave 

properly in the initial region of the energy cascade.  In addition, the largest scale 

 6 
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behavior of the energy cascade is a topic of considerable debate.  Simulations which set 

this behavior do not address this issue. 

The approach used in this thesis is more physically realizable.  It consists of the 

generation of a turbulent field by creating a situation in a flow field that develops into 

turbulence.  In the experimental side of turbulent study, turbulence is typically created 

by passing flow though a grid.  By having the flow move past a grid, there develops 

small turbulent wakes downstream of the grid.  These small wakes merge, and energy is 

then transferred from the larger-scale grid size motions inherent in the flow to the 

smaller scales.  The same method can be applied to the computational study of 

turbulence.  By creating or modifying a flow in a computational domain, it is possible to 

create a physically realizable condition of turbulence.  The methods used in this study 

are detailed in Chapter 2. 

The initial conditions used for the two point correlation examination, as well as 

the Hallbäck strain study, were developed by Professor De Bruyn Kops.[2]  They were 

initially developed from a spectral code for very large direct numerical simulations.  

Before becoming the initial conditions, the fields were progressed through time until a 

suitable fit to the energy spectrum was obtained.  The resolution of the supplied fields 

was 768 x 768 x 1536 grid points.  These fields were averaged down to smaller 

resolutions for computations utilizing local machines in the lab because of 

computational limitations, as well as the amount of time required to perform small tasks 

with the exceedingly large fields. 

 7 
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1.5 Two-Point Correlations 

Turbulence, in itself, is enigmatic.  Comprised of multiple mixing length scales 

and eddies, quantifying such seemingly chaotic conditions is daunting.  One of the 

earliest methods of quantifying turbulence is using two-point correlations.  The concept 

of applying two-point correlations to turbulent flows was developed first by Taylor [3] 

and von Kármán [4].  Two-point correlations were the first method used to quantify the 

concept of the energy cascade, which is a fundamental concept in turbulent flows.  The 

Fourier transform of the two-point correlation is closely related to the energy spectrum. 

The basic concept of a two-point correlation is as follows.  We let =x x + r , 

where  is the separation vector between the points x  and .  The two-point 

correlation is defined as 

r x

 ( ) ( ) ( ),ij i jR x r u x u x=  (1.1) 

where ( )  denotes an ensemble average, and Cartesian tensor notation is used for the 

indices.  The correlation assigns a value describing how related the velocity at points x  

are to the velocity at point x .  The over bar indicates an ensemble average of many 

correlations.  In terms of correlations, there are two classifications, the f- and g-

correlations.  The f-correlation is defined as the correlation of itself, with 

( ,ii i )f R x x x= + ∆ .  The g-correlation is defined as ( ),ii jg R x x x= + ∆ .  It is shown in 

Pope [1] that because of continuity, 0u∇⋅ = , and assuming isotropy, the g and f 

correlations are related by equation (1.2). 

 ( ) ( ) (1, ,
2

g r t f r t r f r t
r

),∂
= +

∂
 (1.2) 
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In this thesis, it is of interest to develop a method for predicting the two-point 

correlation that results when a wall is present.  We are interested in the boundary 

conditions for ijR .   The equation for a two-point correlation at time  is shown in 

equation (1.3), with the superscript 

1n+

1n+  denoting the time level. 

 ( ) ( )1 1 1n n n
ij i jR u u+ + += +x x r  (1.3) 

 
It can be easily shown that the future velocity 1n

iu +  at any point can be expressed 

as the known velocity plus the change in velocity n
iu iuδ as it changes with time, or 

1n n
i iu u iuδ+ = + .  In modifying equation (1.3) to reflect this, we can breakup both the 

future velocity, and the future shifted velocity, shown in the equations below, resulting 

in an expression for a two point expression at time n + 1 based off of known quantities 

at time n, shown in equation (1.4). 

 ( ) ( ) ( ) ( )1 1 1n n n n
ij i j i jR u u u uδ+ + += + +x x r x x r+  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1n n n n n
ij i j i j i j i jR u u u u u u u uδ δ δ+ = + + + + + +x x r x x r x x r x x rδ + (1.4) 

 

This equation can be further simplified by the fact that the first term, by 

definition, is the two point correlation at time n.  Thus, the final expression for the 

correlation at time n+1 can be written as shown in equation (1.5). 

 ( ) ( ) ( ) ( ) ( ) ( )1n n n n
ij ij i j i j i jR R u u u u u uδ δ δ+ ⎡ ⎤= + + + + + +⎣ ⎦x x r x x r x x rδ  (1.5) 

Equation (1.5) is comprised of the known terms , , , and the 

incremental changes in time of those respective velocity terms, denoted by 

n
ijR n

iu n
ju

iuδ  and 

 9 
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juδ .  In the case of a wall suddenly appearing in a field of turbulence, the convective 

and diffusive terms of the Navier Stokes equations are negligible, and the pressure term 

dominates.  In this case, we have ( )
i

p t
i xu t

φδ ∂ ∆ ∂
∂ ∂= − = −  shown more concisely in equation 

(1.6). 

 ( )1n n n
i i i i

i

p t
u u u u

x
δ+ ∂ ∆

= + = −
∂

 (1.6) 

By making the above substitutions into the correlation equations, we arrive at 

equation (1.7), with the subscript s representing values at the shifted location. 

 1
s

n n n n n
ij i j j i

i j i js s

p p p pR u u u u
x x x x

+
⎡ ⎤∂ ∂ ∂ ∂

= − + +⎢ ⎥
∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 (1.7) 

From equation (1.7), it follows that the third term solely involving the pressure 

gradients of the field, can be split in half, and distributed among the first two terms.  

This is shown in equation (1.8), where the pressure terms are included with the velocity 

terms, that are bracketed in equation (1.7). 

 

( ) ( )

1 1
2 2

1 1
2 2

1
s

s

s

n nn n
ij ij j i

i j

n nn
ij i i s

i i i

p pR R u u
x x

R pu u p
x r r

+ ++

+ +

∂ ∂
= − −

∂ ∂

⎛ ⎞∂ ∂ ∂
= − − −⎜ ⎟∂ ∂ ∂⎝ ⎠

 (1.8) 

We are interested in developing a model for the last two terms of this equation. 

 

1.6 Application of Walls 

The study of the effect of walls on turbulent flows has been studied extensively.  

However, most prior works are primarily concerned with the boundary layer effects and 

behavior.  Boundary Layers have shear, which complicate the physics of the near wall 
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phenomena.  This study aims to isolate the effect of the walls by removing the mean 

shear from the problem.  Since it takes time for the viscous terms to begin to act, the 

early time behavior we are interested in is actually identical to the free-slip and no-slip 

boundary insertion problem.  This study is concerned with the instantaneous insertion of 

a free slip non-permeable boundary to turbulence.  That is, unlike a no-slip wall 

condition, fluid is allowed to move freely in directions parallel to the boundary.  It is 

important to note that this makes no difference in this problem. 

1.7 Low Reynolds Number Flows 

Low Reynolds number flows are of particular interest to engineering 

applications.  While most theory and modeling is done for high Reynolds number flows, 

Low Reynolds number flows include many important aspects that are not always 

present or of interest in high Reynolds number flows.  Low Reynolds number flows 

include the near-wall region, and the free-stream region.  Understanding low Reynolds 

numbers flows is of particular importance in many real world phenomena and 

processes, including internal combustion engines, and direct numerical simulations are 

one of the few ways to simulate the phenomena occurring in these flows.   Of particular 

interest in this thesis is the case of flow undergoing axisymmetric strain. 

The goal of this part of the work was originally to match work done by Dr. 

Magnus Hallbäck in his Doctoral thesis.[5]  Hallbäck’s extensive thesis covered many 

aspects of closure terms for the right hand side of the Navier Stokes.  Of particular 

interest in this thesis is the work presented of Direct Numerical Simulation of 

axisymmetric contraction.   
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Axisymmetric turbulence is a simple turbulence situation that is not quite as 

fundamental as isotropic homogeneous turbulence.  At moderate strain rates, this flow is 

difficult to model and makes an excellent test case.  However, the initial conditions that 

led to the Hallbäck data are not well defined.  Therefore, we wish to simulate this flow 

with precise knowledge of the initial conditions.  He introduces a strain rate parameter, 

S* defined in equation (1.9), as well as looking at the dependence on the turbulent 

Reynolds number, Re .  T

 2KS S
ε

∗ = ⋅  (1.9) 

The S in the above equations is defined as ( )1 2
2ij jiS S S≡ .   The turbulent Reynolds 

number is defined as 

 
2

ReT
Kν
ε

=  (1.10) 

The strain rate tensor comes from the decomposition of the mean velocity 

gradient field in the Navier Stokes equations.  The decomposition is 

 i
ij ij

j

U S
x

∂
= +Ω

∂
 (1.11) 

The rate of strain tensor, Sij, is given by equation (1.12).  The last part of the 

decomposition,  is the antisymmetric rate of rotation tensor, and is shown in 

equation (1.13). 

ijΩ

 1
2

ji
ij

j i

UUS
x x

⎛ ⎞∂∂
= +⎜⎜ ∂ ∂⎝ ⎠

⎟⎟  (1.12) 

 1
2

ji
ij

j i

UU
x x

⎛ ⎞∂∂
Ω = −⎜⎜ ∂ ∂⎝ ⎠

⎟⎟  (1.13) 
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While Hallbäck investigated flows pertaining to axisymmetric contraction, 

expansion, and planar strain, the main focus his thesis pertains to axisymmetric 

contraction.  A focus of his research was investigating the effect that varying levels of 

the strain rate parameter had on the anisotropy tensor aij.  Using the definition of the 

mean gradient tensor, S, we can express equation (1.9) as 

 2
2

ij jiS S KS
ε

∗ =  (1.14) 

Where Sij is defined for axisymmetric cases as 

 2 1
23

1
2

1 0 0
0
0 0

ijS S
⎛ ⎞
⎜= −⎜
⎜ ⎟

0 ⎟
⎟

−⎝ ⎠

 (1.15) 

The comparison between Hallbäck’s results and the modeling results of Jay 

Gadebusch is discussed in Chapter 3. 

1.8 Decay Exponent 

Understanding the decay of turbulence is an area of extensive research and 

study.  It is relatively simple to create experiments that create decaying isotropic 

turbulence, and consequently easy to simulate with models of turbulence or even direct 

numerical simulations at lower Reynolds numbers.  In the decay of turbulence, the 

large-scale momentum driven eddies drive the small scale dissipative eddies, where 

energy is taken out and converted to heat. 

A characteristic of the decay of turbulence is that it is believed to have power law 

dependence in relation to its decay of turbulent kinetic energy.  This power law 

behavior has become evident through many experiments and simulations.[1]  As much 
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as it is agreed upon that there exists this power law decay of turbulence, there exists as 

much disagreement as to what the exponent should be.  In the experiments by Comte-

Bellot and Corrsin[6], they concluded the value of the decay exponent to be 1.26 for the 

kinetic energy.  Other analysis was performed by Perot and de Bruyn Kops[7], 

highlighting the variety in the observed decay exponent.  It is understood that the decay 

exponent has a strong Reynolds number dependence, with separate limits for both high 

and low Reynolds number decay.  However, the exact Reynolds numbers dependence is 

still highly uncertain. 

The focus of this report is the decay of low Reynolds number turbulence.  

Batchelor first proposed the value of the decay exponent for low Reynolds number 

decay of 5/2.  This value for the decay exponent is used in many models for the 

dissipation range of turbulence.  However, as noted by Perot and de Bruyn Kops[7] and 

first pointed out by Saffman[8], the decay exponent even for low Reynolds number flow 

is dependent on how the three-dimensional energy spectrum behaves, in particular the 

low wavenumber portion of the energy spectrum.  As described earlier, the low 

wavenumber portion of the energy cascade is representative of the energy contained in 

the largest scales.  For the k2 case, the decay exponent tends towards 3/2 for low 

Reynolds number flow.  However, for flows where the low wave number energy 

cascade behavior has a k4 behavior, the decay exponent for low Reynolds number flow 

is the 5/2 limit most commonly used by many models today. 

The main issue with this discrepancy is that many models make use of the 5/2 

decay exponent; however the turbulent fields used are believed to have k2 behavior in 

the low wave number regime.  It should be said that the aforementioned 3/2 and 5/2 
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decay law exponents are the limits of the decay law exponent.  Often, reported values 

for the decay exponent contain variety in their results.  Figure 1-3 from Perot [7] 

illustrates the seemingly scattered reported values for the decay exponent, plotted 

against the turbulent Reynolds number, Re . T

ReT

n

0.01 0.1 1 10 100 1000
1.1

1.2

1.3

1.4

1.5

1.6

Chasnov
Mansour & Wray
αL=6
αL=30
αL=15
Dickey  & Mellor
de Bruy n Kops et al (5123)
Wray  et al. (5123)
Huang & Leonard

Figure 1 – 3: k2 low wave number spectrum turbulent decay exponent, n, versus the 
corresponding turbulent Reynolds number, . ReT

It is apparent that there is no definitive decay exponent value.  The Lα  values 

with their associated lines are generated from a model developed in from a k/λ model 

developed by Perot and de Bruyn Kops [7], in order to capture the transition behavior 

from high Reynolds number behavior to lower Reynolds number behavior. 

In this study, the total kinetic energy is computed by equation (1.16), and the 

mass dependence is dropped for convenience,  

 21
2 iK u=  (1.16) 

Following equation (1.16), the expression for the kinetic energy decay and the 

dissipation can shown in equations (1.17) and (1.18).  By combining those two 
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equations, the resulting expression for the power law decay for the dissipation is show 

in equation (1.19). 

 ( )0 0
nK K t t −= −  (1.17) 

Since 
 K

t ε∂
∂ = −  (1.18) 

it follows that 

 ( ) 1
0 0

nnK t tε − −= −  (1.19) 

This implies that 

 ( )
( )

(0 0
01

0 0

1
n

n

K t tKT
nnK t tε

−

− −

− )t t= = =
−

−  (1.20)  

Therefore, the decay exponent can be expressed as the slope of the line representing 

how the turbulent timescale, K
ε , evolves in time. 
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CHAPTER 2 

NUMERICAL METHODS 

2.1 Overview 

While there are many commercial computational fluid dynamics software 

packages available for use within the lab, it was advantageous to utilize an in-house 

code.  Altering the boundary conditions and subroutine for solving the Navier-Stokes 

are significantly easier when one has access to the source code.  The code has been used 

for developing turbulence (Gadebusch, [9]).  It has also allowed for the same code 

structure to be expanded to include heat-transfer, forced turbulence generation (detailed 

in this thesis), and other turbulent flow studies, such has channel flow and drag 

reduction. 

The method by which the code steps through time is a three step, second order 

Runge-Kutta method.  Within each Runge-Kutta substep, matrix inversion is 

accomplished via the iterative conjugate gradient method.  Incompressibility is enforced 

using the classical fractional step method.  Essentially, at every time step there occurs a 

sequence of updating the new velocity and pressure at each point.  The classical 

fractional step method is described extensively by Perot [10], and is only covered 

briefly in this thesis.  A detailed explanation of how the conjugate gradient solver works 

is provided by Shewchuk [11].  

The classic form of the Navier-Stokes equation, given by Wilcox[12], is   
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 [ ] [ ](2D p
Dt

ρ ρ µ ζ= −∇ + +∇ ⋅ + ∇ ⋅
u f S u )I  (2.1) 

The use of bold letters indicates that the indices are applicable to all three directions. 

For example, the velocity u, would translate into u, v, and w.  The D
Dt  indicates the 

substantial derivative.  The density of the fluid is represented by ρ , pressure by p, 

viscosity by µ , S is the rate of strain tensor where ( )T1
2 u uS = ∇ +∇ , the second 

viscosity coefficient is ζ .  In incompressible flow, u 0∇⋅ = .  Adding this to equation 

(2.1), Navier-Stokes is simplified to equation (2.2). 

 [ ]2D p
Dt

ρ ρ µ= −∇ + + ∇ ⋅
u f S  (2.2) 

Although a long derivation, the divergence of the [ ]∇ ⋅ S  term, which is the strain rate 

tensor, can be simplified to a simpler form, shown in equation (2.3). 

 [ ] 21
2

∇⋅ = ∇S u  (2.3) 

Substituting equation (2.3) into equation (2.2), as well as making the assumption of 

constant density and viscosity, it yields a simpler form of Navier-Stokes, shown in 

equation (2.4). 

 2Du p
Dt

µ ν
ρ

⎛ ⎞
= −∇ + + ∇⎜ ⎟

⎝ ⎠
f u  (2.4) 

 
The above form of the Navier-Stokes can be viewed symbolically as having a 

convective term, a diffusive term, and a pressure term, shown in equation (2.5). 

 ( )1n n
i i i i iu u C D P+ t= + + + ∆  (2.5) 

   

 18 



www.manaraa.com

Equation (2.5) represents the Euler explicit advancement.  Using the fractional 

step method, the code solves for the updated velocity field by breaking up equation 

(2.5) and solving for the convective and diffusive portions first, and then adding the 

pressure term to the incremental 1ˆ n
i
+u , shown in equation (2.6), and outlined in [10]. 

 
( ) ( )
( )

1 1

1 1 1

ˆ ,

ˆ

n n n n n n
i i i i i i i i

n n n n
i i i i

C D p

p p t

+ +

+ + +

t⎡ ⎤= + + −∇ ∆⎣ ⎦

= −∇ − ∆

u u u u u

u u
 (2.6) 

From equation (2.6), it can be shown that  

 ( )2 1 ˆn n n
i i ip p t 1+ +∇ − ∆ = ∇ ⋅u

 (2.7) 

since by incompressibility it follows 1 0n
i
+∇ ⋅ =u . 

As mentioned above, the code utilizes a Runge-Kutta time marching method 

(RK3) that is second-order accurate.  While more information on the technique can be 

found in Anderson[13], a brief review of the algorithm is reviewed in equation (2.8). 

 

( ) ( )

( ) ( )
( ) ( )

1
2

1
2

1
2

1
2

1

1
1 12

n nn

n n n

n nn

y y t f y

y y t f y

y y t f y

+

+ +

+ ++

= + ∆ ⋅

= + ∆ ⋅

= + ∆ ⋅

 (2.8) 

In equation (2.8), the terms y  and  represent intermediate solutions 

containing both velocity and pressure information, arrived at via equations (2.6) and 

(2.7).  This low storage method of time marching is particularly useful when performing 

large resolution simulations. 

y

In order to perform high resolution direct numerical simulations, it is necessary 

to parallelize the code.  In parallel computing, a few additional subroutines and modules 

are needed in order to support the communication of information between each 

 19 



www.manaraa.com

subdomain located on different nodes of a supercomputer.  These libraries and custom 

subroutines are extensively covered in Gadebusch. [9] 

2.2 Meshing 

The code makes use of a staggered Cartesian mesh, explained in this section.  A 

three-dimensional Cartesian mesh means that each cell of the mesh is a cuboid.  This 

implies that the opposing faces of the cuboid are parallel, and aligned with the global 

coordinate system.  This uniformity allows for many averages, gradients, Laplacians, 

and other operations on the velocity and pressure fields to be computed efficiently.  It 

also allows for simple cell indexing. 

Describing the mesh as staggered refers to the way information within each cell 

is stored.  In collocated methods, all information regarding a particular cell, such as the 

velocity vector and pressure, is stored in the center of the cell.  In a staggered mesh, 

each component of the velocity is stored on the cell faces, and the pressure pertaining to 

that cell is stored at the center.  A sample cell of this type of storage is shown in figure 

2-1. 

 20 



www.manaraa.com

 
Figure 2 – 1: Example of velocity distribution and pressure distribution about each 

cell in the staggered mesh. 

 

As detailed in figure 2-1, each component of the velocity is stored on it’s 

respective face.  The x-component of the velocity, U, is stored at the face of the cell 

normal to the x-axis.  Similarly, the y-component of the velocity, V, and the z-

component, W, are stored at their respective normal faces.  The pressure associated at 

each cell, P, is stored centric to the cell.  This is advantageous when working with the 

presence of walls, as is done in this thesis.  It allows velocities to be set exactly where 

the wall would be in the field of turbulence, and avoid pressure singularities that would 

arise with the instantaneous insertion of a wall.  Staggered mesh methods also have 

unique conservation properties, such as mass, momentum, kinetic energy, and vorticity.  

They also have no artificial dissipation. 
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The overall domain used for much of this thesis is cuboid in nature.  If we 

denote n as a characteristic length, the length of each side of the domain used for this 

study in the ( ), ,x y z  coordinates would be 2n n n× × .  The initial conditions supplied 

by Professor De Bruyn Kops [2] had a domain size of 18 18 36π π π× × . 

2.3 Two-Point Correlations 

Starting from the basic code, subroutines were added to compute two-point 

correlations of the velocity fields. Starting from the basic two-point correlation 

definition given in equation (1.1), correlations were created based on the staggered 

mesh velocity fields produced by the code.   

The correlations, generally shown graphically along a line, are constructed in 

three-dimensions within the code.  To begin, the code allocates a correlation field, 

referred to as the correlation space, in which the three-dimensional two-point 

correlation will be assembled.  Each point in the correlation space essentially represents 

the distance from the center of the correlation, i.e. the center point (0,0,0) would 

indicated the velocity field correlated at a separation of ( )0,0,0r = .  For every point in 

the correlation space, an array of shifted locations is built, based on the point’s distance 

to the center of the correlation space.  These shifted points are indicated by hats, as 

shown in equation (2.9). 

 ( )ˆ , ,i i x y zx r y r z r= + + +u u  (2.9)  

A summation is then taken of each point in the velocity field correlated with its 

associated shifted point.  It is important to note here that for correlations taken 

involving the wall, the summations were only planar, parallel to the wall.  For isotropic 
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cases, the summations are taken in all three directions.  The summation is detailed in 

equation (2.10) 

 
Figure 2 – 2: A three-dimensional view of a 11R  correlation using transparent iso-

surfaces to show intensity values.  

 ˆij i jR = u u  (2.10) 

 
 The over bar in equation (2.10) formally represents ensemble averaging, but in 

practice is a spatial average over homogeneous directions.  Because we are interested in 

the behavior of the correlations near the wall, the averaging does not take place over the 

entire domain.  With the wall located on the y-faces of the domain, averaging is only 

performed in the homogeneous x-, and z-direction, and consequently not in the 

inhomogeneous  y-direction.  The resulting correlation space field created by the two 
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Figure 2 – 3: A typical f-correlation of isotropic homogenous turbulence, in this case 

the 22R  f-correlation (from 323 field). 

, r 

F Correlationf

point correlations in the velocity fields is a three dimensional correlation.  An example 

of the three dimensional field is shown in figure 2-2.  In order to generate a standard 

visualization of the correlation versus distance from the center, it is necessary to look at 

the values along a line extending from the center of the correlation.  A typical f-

correlation is shown in figure 2-3, and is created simply by examining the values 

extending outwards along the center axis in the corresponding velocity direction (x-

direction for R11, y-direction for R22). 

 

Figure 2-2 utilizes iso-surfaces to demonstrate the shape of the correlation in three 

dimensions.  It has a characteristic ellipsoidal shape that is elongated in the velocity 
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direction.  It is casually referred to as a “submarine” shape, as one would imagine what 

the main portion of a modern thermonuclear submarine looks like.   

When looking at the constitutive parts of the correlation given in equation (1.5), 

the same process of creating the correlation fields documented above are used.  

However, consideration of what velocity and pressure differences that are being 

combined becomes important.  The staggered mesh, while useful for many aspects of 

numerically solving the discretized Navier Stokes, necessitates careful accounting of the 

locations of the pressures and velocities in the cell when taking derivatives and 

differences in regards to the two point correlations.  An example of would be 

performing correlations involving both the pressure and the velocity.  The pressure is 

stored at the center of the cell, while the velocity in the cell is stored at the faces.  In 

order to take a ipu  correlation at the point (32,32,32), for example, simply taking the 

product of the pressure and velocity at (32,32,32) would not yield the r=0 correlation 

value.  In order to adequately perform such a correlation, either the velocity at the 

center of the cell, or the pressure at the face, needs determining. 

2.4 Greens Method 

In order to verify that the conjugate gradient solver behaves correctly with the 

addition of the boundary conditions the wall imposes, an alternative solution approach, 

a Greens method approach, was also developed to predict the velocities near the wall.  

The method is useful in solving differential equations that have simple boundary 

equations.   
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The motivation behind applying Greens method to solve for the flow was to 

verify that the conjugate gradient solver was behaving properly in predicting the 

velocity field with the insertion of the wall.  We start with an expression for the 

divergence of the velocity, shown in equation (2.11).  This is non-zero only in the cells 

next to the wall.  For a general image of how the Greens method is applied in the code, 

a graphical representation is shown in figure 2-4. 

 wall wall wallv A vv
V y

∇⋅ = =
∆

 (2.11) 

In the figure, taking the divergence of the velocity next to the wall, it can be 

shown from equation (1.6) that taking the divergence of both sides yields the equality 

shown in equation (2.12). 

 

( )
( ) (

( ) ( )

1

1

2

0

n n

n n

n

u u p t

u u

p t u

+

+

= −∇ ∆

∇⋅ = = ∇⋅ −∇ ∆

∇ ∆ = ∇⋅

)2 p t  (2.12) 
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It is important to note that equation (2.12) is the reduced Navier-Stokes 

equations for wall insertion.  The last line of equation (2.12) is also solved by the 

conjugate gradient solver.  Our approach to solving this resulting Poisson equation is 

the Greens function solution.  The source term φ  is defined as ( )p tφ = ∆ , and the 

equation needing solving is 2 Sφ∇ = .  The solution to this is shown below in equation 

(2.13).  S is the source from the cell, and r is the distance from the cell to the location 

φ . 

r
y

x

z

r
y

x

z

r
y

x

z

 
Figure 2 – 4: Representation of how the code develops and calculates the Green 

method approach. 

 ( )1
4 4

S x
S dx d

r x
φ

π π
x

x
′

′ ′= ⋅ =
′−∫∫∫ ∫∫∫  (2.13) 
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Since  everywhere but the line of cells next to the wall, the triple 

summation can be reduced to a summation over the cells adjacent tot the wall.  

Following the above, the pressure term in the right hand side of equation (2.12) can be 

expressed as shown in equation (2.14). 

( ) 0S x′ =

 ( )( ) ( ) ( ) 1
0

0

,0, ,0,1x wall wall

x z x z x x y

v x z v x z
p t

y x x y ⎡ ⎛ ⎞
⎢ ⎥⎜ ⎟′ ′ ′ ′ ′− + −∆⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤
⎢ ⎥′ ′ ′ ′
⎢ ⎥∆ = ⋅ + ⋅

′∆ − ∆⎢ ⎥
⎢ ⎥⎣ ⎦

∑∑ ∑∑ ⎤
 (2.14) 

This equation is summed over both x′  and z′ .  The prime notation denotes 

locations along the wall.  The last term in equation (2.14) represents the reflection term, 

a concept discussed extensively later in this thesis. 

2.5 Initial Condition Generation 

Rather than initializing turbulence as a sequence of random numbers, we wish 

to generate it in a manner that is closer to reality, or physically realizable. The 

generation begins with an initial condition of zero velocities and pressure field.  From 

there, the field is progressed through time, with different modifications made to the 

solution of the Navier-Stokes equations and boundary equations within the domain to 

simulate physical conditions that mimic actual turbulence creation. 

The incompressible Navier-Stokes solved by the code is given in equation 

(2.15). 

 21DU p U
Dt

ν
ρ

= − ∇ + ∇  (2.15) 
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The density term, ρ , is omitted for convenience, as it could be assumed that 

1ρ = .  By inspection, the right-hand side of the Navier-Stokes equation is comprised of 

acceleration based terms.  The first approach to generating turbulent fields was insertion 

of jets into the domain.  The method developed was to add an acceleration term, jetsa  to 

the Navier-Stokes equation, 

 21
jets

DU p U a
Dt

ν
ρ

= − ∇ + ∇ +  (2.16) 

 
In this arrangement, an array of jet accelerations was created such that 0jetsa =  

in most locations, and  in only a few locations.  In order to not arrive at a steady 

state condition after some time, it was determined that the jets would be required to be 

changing in direction, location, and magnitude as a function of time.  Therefore, each jet 

would operate on propelling the fluid at a location for a fixed amount of time, and then 

stop.  The timescale generally associated with turbulent flows is given as 

0jetsa ≠

τ , 

where Kτ
ε

= . 
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K  is the total kinetic energy in the system, and ε  is the rate of dissipation in 

the field.  This timescale was the basis for how long each individual jets should remain 

on.  The timescale τ  was divided by the total number of jets, which yields the 

increment of time between each deactivation of a jet reaching the end of its τ  duration, 

and the activation of a new jet to being.  This can be visualized by figure 2 – 5.  The 

magnitude of each jet was constant, but each new jet position and its orientation were 

picked randomly.  The method of establishing random numbers was to make use of the 

intrinsic random number generator subroutine built into Compaq Visual Fortran 

Standard Edition 6.6.0 as a f90 function.  It uses the command Random_seed() to 

seed where in the random number sequence it begins, based off of the current date and 

time.  It then has a command to fill a single variable or an array with random numbers, 

each number between 0 and 1.   A more detailed look at the methodology behind the 

random number generator is shown in the Compaq Visual Fortran Standard Edition 

6.6.0 help files, with details the functionality of the generator, and references the studies 

published about the algorithm it uses.[14, 15] 

Figure 2 – 5:  A pictorial representation of the jet activation concept. 
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As stated before, the field is initialized with a zero velocity condition.  A full jet 

array is initialized, with randomly located and oriented jets.  The code then progresses 

through time, with the fluid accelerating at the jet locations, and turns off the 

appropriate jets after they have run for one turbulent timescale, while activating a new 

randomly located and oriented jet.  The one caveat in this randomness associated with 

assigning random jet locations and orientations is that without monitoring, jets can be 

placed directly next to each other, causing divergence issues at random times.  

Therefore, a subroutine was created to ensure that jet locations would not be chosen if 

they were within a certain distance of any existing jet.  If a random location fell within 

this tolerance of any existing jet, it would be discarded, and a new random location 

chosen.   

A second approach utilized for generation of turbulent initial condition is the 

presence of cubes in a flow field.  Inspired from how grid turbulence is created (flow 

through a series of grids), flow is passed through an array of randomly distributed cubes 

in a domain area.  The cubes themselves have a user determined size.  The same method 

of checking jet locations was applied to the randomly chosen box locations, in order to 

prevent boxes from overlapping each other.  Overlapping boxes will cause divergence 

issues because of the application of the box boundary conditions, which involves 

specifying velocity conditions and pressure gradients.  The flow is driven past the cubes 

by a uniform pressure gradient that is randomly oriented and which changes once a 

turbulent timescale has elapsed. 
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CHAPTER 3 

RESULTS 

 
This chapter is divided into seven separate sections, (1) wall insertion, (2)the 

validation of the Green’s Method, (3) two-point correlation results, (4) vorticity, (5) low 

Reynolds number strain flow, (6) the generation of new initial conditions, and (7) decay 

law studies. 

3.1 Wall Insertion 

This research concerns the effect of instantaneous wall insertion into 

homogeneous isotropic turbulence.  In order to simulate the presence of a wall in the 

domain, both the velocity fields and the pressure field needs to be modified.  The wall 

being inserted into this simulation is a slip wall.  The slip wall specifies a zero 

penetration boundary condition at the wall, but fluid parallel to the wall is free to move.  

Furthermore, the slip wall specifies that the normal velocity gradient of the tangential 

velocities ( du
dy  and dw

dy  in this study) at the wall to be zero.  An example wall is shown in 

Figure 3.1.  The shaded faces are representative of the faces of the domain with the wall 

boundary conditions imposed.  The slip wall is the appropriate choice of a wall 

boundary condition for this study, because viscous effects take time to affect the flow, 

and the pressure effects (such as wall insertion) are instantaneous.  There is no 

difference between a slip or no-slip wall at the early times of interest in this work. 
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Much of the work on the insertion of walls was performed with the walls on the 

X-Z faces at the end of the domain.  Other wall arrangements were investigated. The 

purpose of investigating the field with the walls placed in other orientations was to gain 

a greater statistical sample base for the results.  Isotropic Turbulence is characterized by 

its statistics being independent of directionality.  While the results shown later in this 

chapter indicate some directionality (discussion in Section 3.2), the initial fields are 

considered isotropic, and in the regime of the center of the correlations, the effect of the 

skewness becomes insignificant.  The boundary conditions at the wall are  

       X 
               Z 
 
                  Y 

 
Figure 3 – 1: Simulation domain showing where the boundary conditions are 

imposed (shaded sides). 

 0, 0
wall

wall wall

du dw v
dy dy

= = =  (3.1) 
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The insertion of the wall carries implications for the pressure field.  A 

characteristic of the rapid insertion of walls into a flow is that the pressure undergoes 

large fluctuations in order to correct for the sudden imposition of the perpendicular 

velocity boundary condition of 0v = .  The boundary condition at the wall for the 

pressure is that the derivative with respect to the wall normal direction is zero as shown 

in equation (3.2). 

 0
wall

dp
dy

=  (3.2) 

In this work, only one time step is performed, as that is the problem of interest.  

These boundary conditions were applied explicitly in the solver subroutine of the code.  

Because of the very small timestep, the viscous terms are negligible and the tangential 

velocity boundary conditions, equation (3.1), are irrelevant 

3.2 Green’s Method Validation 

In order to check the results from the Navier-Stokes code being used, it was 

determined to apply a Green’s function method to determine the same solution and 

confirm the same values for the near wall velocities as the Navier-Stokes solver 

produces.  After successful implementation of the algorithm explained in section 2.3, 

the results of the pressure field after the wall was inserted were found to agree well. 

Figure 3-2 shows an output of the two different methods.  Each image in Figure 

3-2 is a XZ planar slice of the pressure at a grid location of 1j =  just after the wall has 

been inserted.  This represents a slice of the flow that is parallel to and very close to the 

wall being inserted.  This figure shows the contours of the pressure at one grid point 

away from the wall.  The image on the right is from the Navier-Stokes code and the 
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image on the left is the solution from using the Green’s function method.  The contour 

levels shown in the legends show that the two methods generate extremely similar 

results for the pressure field.  It is not expected that they be exactly the same, because 

the accuracy of the Greens method is directly related to the extent of the summation 

terms which in theory should go to infinite distance.  
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Figure 3 – 2: Comparison of pressure fields.  The left field is generated from the 

Greens method, and the right field is generated from the Navier-Stokes solver. 

ZZ 

In performing the Green’s function method for computing the velocity and 

pressure fields after the wall is inserted, we observed a large disparity in the 

computational time required to complete the calculations.  In a relative sense, the 

Navier-Stokes method completed in about a tenth of the time that the Green’s function 

method required.   The cause of the longer time to calculate the result with the Green’s 

function method is due to the double summation that it requires.  In order for it to be 

accurate, it needs to perform many summations over the wall plane area.  In order to 
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become reasonably close, the wall plane is extended via periodicity, and the 

summations are performed over three to four wall lengths. 

Figure 3 – 3: f-correlations of the initial velocity fields before the wall is 
introduced.  ReT = 640. 

3.3 Two-Point Correlations 

The main method used in this thesis for analyzing the velocity fields and how 

they react to the sudden imposition of a wall is two-point correlations of the velocity 

fields.  Figure 3-3 is the f-correlation of isotropic at a turbulent Reynolds number of 

.  As discussed previously, the two-point correlations are a function of the 

separation distance which is three dimensional.  The common presentation of the 

correlations in this thesis will be two dimensional slices of this three dimensional 

structure, shown previously in figure 2-2.  There are also comparisons performed in one 

Re 640T =
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dimension, which are useful for understanding the proposed model for predicting how 

walls influence the turbulence statistics. 

The two-point correlation performed on the initial conditions return a profile 

typical for isotropic turbulence. This data is from a 256 256 512× ×  DNS simulation, 

but only every 8th data point is used in the data post-processing.  This makes the results 

for  inaccurate, but the resulting shape for larger r is unaffected.  The domain size 

for the field is 18π, so the extents of the correlations in figure 3-3 represent half the 

domain size.  For the classical f-correlation the scale is normalized by the peak value at 

the center.   

3r ≥

The correlations shown in Figure 3-3 are f-correlations.  There is debate about 

whether the f-correlation should become negative at large separation distances.  After 

verifying the technique in the code, is was shown these negative tails do exist for this 

flow field, but they decrease to zero as . r →∞

The next step in analyzing the two-point correlations was gaining an 

understanding of the two-dimensional representations of the correlations.  The 

correlation space is shown in two dimensions in figure 3-4. 
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Figure 3 – 4:  11R  correlation looking at the rx-rz Plane at . 0yr =

r 
 
         r 

 

The two-dimensional field in figure 3-4 shows the highest area of correlation in 

the center of the field, and it tapers off as the distance from the center increases.  This 

image is a  correlation, which is the correlation of the v-velocities at two different 

points separated by distance r.  It is a X-Z planar slice of the correlation field where 

. It is an averaged correlation, (over x, y and z) before the wall is introduced.  

Following the discussion of two-point correlations from previous chapters, the f-

correlation could be constructed by picking the values along the x-axis where 

11R

0yr =

0zr = .  

The two-dimensional correlation field also contains the g-correlation as well.  This 
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correlation could be constructed by extracting the correlation values along the rz-axis 

where . 0xr =

The image presented in figure 3-4 demonstrates an important issue that was of 

concern throughout this thesis.  The  correlation above has what is referred to as 

“skewness” in it.  This means that the correlation is not symmetric about the two axes.  

In isotropic homogeneous turbulence, there should be symmetry about every axis.  This 

figure suggests that the velocity fields in the initial conditions are not truly isotropic for 

the large scale eddies.  It is still not entirely clear if this defect is mostly cosmetic or if it 

leads to an alteration of the results for the wall insertion problem.   

11R

Other initial conditions generated by Professor de Bruyn Kops[2] were 

investigated using two-point correlations.  Inherent skewness was also present in those 

fields.  While it was determined that the initial conditions being used for the two point 

correlation study were skewed, the important region near the center of the correlation 

was still characteristic of isotropic turbulence, and the skewness only had an effect on 

the largest r values of the correlation space.  Figure 3-5 shows an rx-rz slice through the 

center ( ) of the  correlation space and a closer view of the center of the 

correlation space on the same plane.  The axis r

0yr = 11R

x and rz refer to the separation distance.  

This figure is similar to figure 3-4, and is included to the comparison of the skewness 

present in the greater r values, and the absence of the skewness in the lower r values, 

shown in the zoomed-in view on the right. 
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Figure 3 – 5: rx-rz planar slice of 11R  correlation at 0yr =  (left), Center of 

11R correlation zoomed in (right). 

While these initial conditions were used in this research, it is shown in latter 

sections of this chapter that the inherent skew present in the initial conditions do have 

an effect on the strain flow study.  For the purposes of the wall insertion investigation, 

they were deemed suitable for use. 

Using the Navier-Stokes method and the initial conditions detailed above, the 

wall was inserted.  For the purposes of this research, the main correlation of interest is 

the correlation, and its diagonal constituents, the , 22R 21R 23R , 32R , and  correlations.  

The correlation tensor is not symmetric after the wall insertion.  While equally 

interesting, we have found that the other components of the correlation tensor ( , 

12R

11R 13R , 

31R , and 33R ) are not as profoundly affected by the wall insertion and are much harder 

model. 

The  correlation of isotropic turbulence is shown in figure 3-6.  This is a r22R x-

ry slice of the three-dimensional correlation field at 0zr = .  Similar to the  11R
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correlation, the  correlation is characteristically longer in the r22R y-direction 

representing the f-correlation, and the g-correlation can be viewed as the correlation 

values extend in the rx direction.  

 
Figure 3 – 6: A rx-ry  planar slice of the 22R  correlation field through . 0zr =

Figure 3-6 is the initial  correlation before the wall insertion.  It is shown as 

a basis for comparison to the correlation after the wall was inserted, which is shown in 

figure 3-7.  As with the pre-wall condition shown in figure 3-6, the post-wall condition 

22R
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in figure 3-7 is an rx-ry  planar view through the center of the correlation field, where 

.  The solid black line represents the location of the wall. 0zr =

 
Figure 3 – 7: A rx-ry  planar slice of the 22R  correlation field through  after 

the imposition of walls. 
0zr =

r 
 
        r 

The correlation field after the wall is inserted requires discussion.  Correlations 

very far from the wall see less effect from the presence of the wall. Correlations close to 

the wall see much more effect, as demonstrated in figure 3-7.  However, care must be 

taken in performing correlations too close to the wall, because at 1 grid point from the 

wall, there tends to be more numerical error due to the severe lack of resolution.  The 
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results presented in the majority of this thesis are of correlation results with the 

correlation being taken at 2 grid points from the imposed wall.  Latter results will show 

the effect of taking the correlations further from the wall, and will be explicitly detailed 

as to the distance from the wall they were taken. 

The grid lines on the image in figure 3-7 are representative of the mesh 

resolution.  The peak value in the middle is still at 0r = .  The wall in the correlation 

space is at two grid points to the left, and runs from the top of the image to the bottom, 

along the x-direction in the image.  It is represented by the solid black line in the figure. 

In the three-dimensional correlation space, the wall would exist in the rx-rz plane at the 

ry location of .   2j = −

While figure 3-7 shows the correlation field to the left of  (where the 

wall is located), the results in that area are not considered physical.  By contours levels 

alone, they are mostly small compared to the important correlation peaks, and in results 

following these, in an effort to analyze the output after the walls, any information to the 

left of the wall location is ignored. 

2j = −

It is clear in comparing the pre-wall  correlation to its post-wall counterpart, 

that the velocity field acting perpendicular to the wall and its resulting correlation is 

greatly affected by the presence of the wall.  The overall magnitude of the peak of the 

correlation is nearly halved, and the symmetric oval, or “submarine” shape (in three 

dimensions) is severly altered.  In this thesis, a model was developed to predict this 

behavior. 

22R

The first attempt to predict the reaction of the correlation to the insertion of the 

walls was to break up the two point correlations as detailed in section 1.5.  The first 
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correlation that was examined was the  correlation.  The  correlation was 

constructed from its constituent parts.  The pre-wall and post wall condition for  are 

shown in figure 3-8, and the intermediate parts given in equation (1.7) and again in are 

shown in figure 3-9.  

11R 11R

11R

 
Figure 3 – 8: ry-rz plane of the 11R  Correlation at r 0x =  pre-wall (left), post-wall 

(right). 

Figure 3-9 shows a Y-Z plane at 0x =  of the  correlation’s constitutive parts, 

beginning with the 

11R

1s

np u
x
∂
∂

 term (left), then the 1
n

s

pu
x
∂
∂

 term (middle), and lastly the 

s

p p
x x
∂ ∂
∂ ∂

 (right).The scale on both the axis labeled “MY” and “MZ” is in cell units, and 

the contour scale is the correlation values. 
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The purpose of decomposing the correlation was to gain an understanding of what 

portions of the decomposition have the most profound effect on the development of the 

correlation.  After performing the decomposition in the code, and summing the 

constitutive parts together in the correlation space, it was confirmed that the parts sum 

to the total.  This validated the decomposition method.  Figure 3-10 shows the 

difference in the correlation values between the pre-wall condition shown in figure 3-6 

and the post-wall condition shown in figure 3-7, for R22. In examining figure 3-9, it was 

 
Figure 3 – 9: ry-rz plane at 0xr =  of the 11R  correlation’s constitutive parts.  The first 

part (left), second part (middle), and third part (right). 
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determined that the third part of the correlation decomposition had the highest impact 

on the final correlation field, as it was the largest in magnitude of the constitutive parts, 

and was symmetric, making it the ideal candidate for further investigation in this study, 

as it seemed the easiest to model.  This approach did not produce definitive results for 

R11 but did lead to interesting results for R22.  After pursuing the decomposition method 

of predicting the correlations, we determined that it would be better to compare the 

summation of the constitutive parts to the overall difference between the pre-wall 

correlation and the post-wall correlation.   

 
Figure 3 – 10: rx-ry  Plane at 0zr =  of the difference between the 22R  before and 

after the insertion of the wall. 
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In performing this difference, the resulting field was surprising.  The field of 

the difference of the two correlations was very similar to the original correlation 

developed but shifted to the left.  The solid black line in the image represents the 

location of the wall.  The original correlation was centered two grid points to the left.  

In an effort to fully comprehend these results, f-correlations were performed of the 

correlation fields, and are shown in Figure 3-11. 

Figure 3 – 11:  22R  f-correlation with the difference between the two wall conditions 
plotted. 

In this image, the wall was inserted two grid points to the left, and is 

represented by the thick dotted black line.  The dotted red line shown in figure 3-11 

represents the difference between the two correlations.  It was believed that this shape 

could be achieved by a scaled down version of the full  correlation.  However, in 

scaling down the  correlation, the resulting shape was not similar to the difference. 

22R

22R
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The next attempt at predicting the final  correlation was to subtract a 

mirrored and shifted  correlation.  The  correlation was shifted twice the wall 

distance, , which is the distance from the correlation center to the wall.  This is 

shown in figure 3-12.  The process of mirroring and shifting the correlation shall be 

referred to as the reflection technique. 

22R

22R 22R

wally

Figure 3 – 12: 22R  rrelation with the mirrored and shifted 22f co- R correlation plotted, 
and the resulting difference and actu 22a  l R result after the wall. 

Figure 3 – 13:  22R  f-correlation with the mirrored and shifted 22R  correlation 
plotted, and the resulting difference and actual 22R  result after the wall.  The wall is 

4 cell locations from the center of the correlation. 

The reflection technique does not account for the behavior beyond the wall.  

Beyond the wall (to the left), the correlation is zero (theoretically) and therefore is 

trivial to model.  Figure 3-12, demonstrates this discrepancy. 

The reflection technique predicts the near wall correlation behavior exceedingly 

well.  In an effort to further analyze the reflection behavior, the wall distance  was wally
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varied to investigate if the technique applies well at any distance from the wall.  It is 

shown in figure 3-13 and 3-14 that the reflection technique also performs well for the 

conditions where the wall is farther from the center of the correlation field. 

 The farther from the wall the correlation is taken, the less affect the pressure has 

on the perpendicular velocity, v.  As  increases, the reflection technique predicts 

the correlation behavior more accurately.  These simulations were performed at 

 resolution, which is in the low DNS range of simulations.  At lower 

resolutions, the reflection technique predicted the behavior less accurately.  Therefore, 

with increased resolution of the near wall behavior, the reflection technique performs 

better.  

wally

128 128 256× ×

Figure 3 – 14:  22R  f-correlation with the mirrored and shifted 22R  correlation 
plotted, and the resulting difference and actual 22R  result after the wall.  The wall is 

6 cell locations from the center of the correlation. 
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Similar analysis using the reflection technique was performed for all ijR  

configurations.  It was discovered that the reflection technique predicted the correlation 

behavior well for all the correlations involving the perpendicular velocity v, but not for 

any correlations that involved the tangential velocities exclusively.  For our study of the 

walls on the Y faces of the domain, the v velocity was the corresponding affected 

velocity, and the reflection technique accurately could predict the behavior of the , 

, , 

22R

21R 12R 32R , and 23R correlations.  It could not, however, predict the , 11R 13R , 31R , and 

33R  correlations well.  This is shown in Figure 3-15.  Here, we examine the g-

correlation of R11, as it is the correlation of R11 affected directly by the wall. The 

correlations not predicted by the reflection technique are referred to as “off-

correlations”.  This is shown graphically in figure 3-16.  The highlighted area represents 

the correlations that are well predicted by the reflection technique. 

 
Figure 3 – 15:  R11 g-correlation with the mirrored and shifted R11 correlation plotted, 

and the resulting difference and actual R11 result after the wall.  The wall is 2 cell 
locations from the center of the correlation. 
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Figure 3 – 16: Graphical representation of the reflection technique and the 
correlations it predicts (highlight). 

Figures 3-17 and 3-18 demonstrate the  correlation, and the reflection 

techniques applied to it.  To begin, the  correlation does not behave like a 

characteristic 

12R

12R

iiR  correlation as seen previously.  As shown in figure 3-17, it has a 

characteristic “flower” orientation, with alternating areas of positive and negative 

correlation about the center of the correlation space.  This has its roots in continuity, 

and conservation of mass.  At the center and along the main axis, the correlation should 

be zero, and the areas in all quadrants around those axes should have alternating 

correlation values, as shown.  Because of this orientation, the plane that contains 

behavior resulting from the wall insertion is the rx-ry plane, about .  This is shown 

on the right image.  The planar slice is averaged 32 times over various z locations in the 

domain, thus it has a “smoother” contour image. 

0zr =

Figure 3-18 shows the results of applying the reflection technique to the  

correlation.  The wall is two cells away from the correlation, and because of the 

orientation, everything below the wall is beyond the wall, and therefore non-physical.  

The resulting part of the correlation matches in both shape and magnitude.  This result 

is similar for the other cross-correlations that involve the perpendicular velocity, v.   

12R
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The idea behind the reflection technique and it’s relatively simple prediction is 

believed to lie in vorticity.  Vorticity is easier to understand than velocity because it 

does not involve the pressure.  Vorticity is present in turbulent flows, and when the wall 

is inserted, the wall boundary condition requires image vorticity to be present on the left 

side of the wall.  This causes the flow to be essentially reflected about the wall. 

 

 
Figure 3 – 17: 12R  correlation in 3-dimensions (left) and a rx-ry planar slice about 

0zr =  (right). 

 

 
Figure 3 – 18: 12R  correlation after wall insertion, reflection model (left) and 

computed (right). 
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  While this works well for flow into and out of the wall, the flow perpendicular 

to the wall, and it’s reflection, is less obvious.  Determining the wall effect on the 

parallel velocities posed more of a challenge, and so a vorticity approach was taken. 

 

 

3.4 Vorticity 

Calculating the vorticity is not difficult.  Vorticity is the curl of the velocity field, 

uω =∇× .   Figure 3-19 shows a section of a staggered mesh, with velocities located in 

the correct location.  This figure is the reference to show how the vorticity is calculated.  

The calculation used for calculating the vorticity in the x-direction is 

 ( ) ( ) ( ) ( ) ( ), , , 1, , , 1 , ,
, ,x

v i j k y w i j k z v i j k y w i j k z
i j k

y z
ω

∆ + + ∆ − + ∆ −
=

∆ ∆
∆

 (3.3) 

The x-vorticity is comprised of the v- and w-velocities, as well as the cell 

spacing between them.  The vorticity is calculated about the x-axis centric to all 4 

velocities.  Because of the staggered mesh, this vorticity is located along the cell edges 

that intersect centric to the 4 velocities.  The red boxes represent the cells one z-

direction above the black cells, and the blue cells are one y-location behind the black 

cells.  The vorticity of interest is highlighted in yellow, and the corresponding velocity 

components are labeled. 
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Using this method, and applying it to the other directions, the vorticity fields 

were calculated.  In order to validate the created vorticity fields, the curl of the vorticity 

fields was examined.  Because of incompressibility, the curl of the vorticity is equal to 

the Laplacian of the velocity,  

Z

Y

X

w(i,j,k)

w(i,j+1,k)

v(i,j,k)

v(i,j,k+1)

Z

Y

X

w(i,j,k)

w(i,j+1,k)

v(i,j,k)

v(i,j,k+1)

 
Figure 3 – 19: Vorticity field calculation. 

 2uω∇× = −∇  (3.4) 

 
While it is simple to create a valid vorticity field, it is not as easy to calculate 

velocities from the vorticity field.  In the work of this thesis, the vorticity fields that 

were created were representative of the local velocities immediately surrounding the 

location of interest where the vorticity was sought.  The goal was to modify the vorticity 
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fields via reflection, and then deduce the velocity field from them.  Upon creation of the 

vorticity field, it should be possible to immediately return a velocity field from the 

vorticity field identical to the former velocity field.  This did not prove as simple as it 

would seem. 

The first main attempt at constructing a velocity field from a vorticity field was 

utilizing the Biot-Savart law.  Rooted in electro-magnetism, this is a method by which 

to determine a magnetic-field vector from the magnitude and direction of a source 

current.  The fluid-mechanics parallel is that it can determine a velocity, due to a vortex.  

The Biot-Savart equation in terms of fluid mechanics is given in equation (3.5). 

  

 ( ) ( )
( ) 3

1
4

x x
u x d x

x x

ω

π

′× −
′=

′−
∫  (3.5) 

 
In equation (3.5), ω  is the vorticity, and ( )x x′−  is the distance from the vortex 

to the velocity field.  The integral is a volume integral, over all three directions.  This 

method did not return our initial velocity values. 

The next approach is from a paper by R. Yakota.[16]   His method uses a 

modified Biot-Savart equation that tries to account for the singular nature of the 

integral.
 

 
( )
( )

(5
2

2 25
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π σ

+
= ×

+
∑u  (3.6) 

where c xσ = ∆ . 
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This approach was intended to smooth the singular nature of the resulting 

velocity field due to the finite vortex spacing.  Initially, this method was difficult to 

implement, as the resulting velocity fields that were generated did not match those with 

which it was supplied.  Therefore, validation with simple vorticity cases was necessary 

in order to prove that this method was appropriate, and to determine c. 

In order to validate the results of the modified Biot-Savart method shown in 

equation (3.6), we applied it to several simple test cases in which the solution can be 

derived analytically.  The first case examined was that of a single line vortex of infinite 

length. 

It follows in the derivation of Katz [17] that after manipulation of this equation 

and application of the infinite length boundary condition of the vorticity, it falls out that 

the velocity at a point induced by a infinite vortex is given by 

 0
2 2

z zy xu v
r r r r

ω ω
π π

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

w =  (3.7) 

 56 



www.manaraa.com

In this case, a vortex strength of 100.0 was used.  The velocity field should have 

a 1/r behavior as distance from the vortex increases. 

For this validation case, the single vortex was generated acting positive in the z-

direction, as shown in Figure 3-20. In analyzing the resulting velocity field, a planar 

slice of the velocity was examined perpendicular to the vorticity, as designated by the 

yellow highlighted plane in Figure 3-20.  The behavior described in equation (3.7) is for 

an infinite vortex, and the vortex was made “infinite” in the calculation by using 

periodicity in the vortex direction. It is important to note here that periodicity was not 

applied in the transverse (x, y) directions, as this would represent many vortex lines 

acting in parallel. 

The modified Biot-Savart equation (3.6) involves the tuning variable, σ.  It was 

initially thought that this was on similar order of the cell spacing, which proved true.  

However, it became apparent in the examination of the test cases that there resulted in a 

 
Figure 3 – 20:  Diagram of single vortex (black arrow) in a domain. 
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tuning constant being necessary in the calculation of σ, such as equation (3.8). 

 
Figure 3 – 21: The velocity associated with a vortex strength of 100 for different 
resolutions.  Theoretical result (colored lines), computed result (circles with solid 

black lines) 

 C xσ = ∆  (3.8) 

Numerical calculations, and equation (3.7), produces the expected 1/r behavior.  

However, there is a dependence at very short lengths ( x< ∆ ) of r on the value of the 

constant C.  It greatly affected how the curve at the first and second points closest to the 

vortex behaved.  The best constant C associated with a line vortex was 0.38.  With this 

sigma value, the modified Biot-Savart returned the appropriate 1/r dependence, as 

shown in Figure 3 – 21.  With the value of the constant C = 0.38, the velocity has the 

expected 1/r behavior as shown with the black circles/line.  The red, blue, and green 

designate different resolutions, showing that the value of 0.38 for C is valid for any 

resolution. 
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It is important to note at this juncture the effect of  tuning σ.  Altering the value of 

σ greatly affects the velocity field prediction close to the actual vortex.  This behavior is 

important to note, because when predicting the velocity at a point in a turbulent field of 

vorticity, it is the vorticity components closest to the velocity component in question 

that have the greatest effect on an accurate velocity prediction.   

The second method of validating the modified Biot-Savart method is by 

simulating a sheet of vorticity.  This involves a plane of vorticity, with the vorticity 

acting in either of the planar directions, but not out of the plane.  This is shown in 

Figure 3-22.  The sheet of vorticity is acting in the z-direction, and the velocities are 

those on the x-y plane denoted by the yellow sheet.  The physical velocity condition that 

would produce such a vorticity field would be planar shear, with two velocities acting 

equal and opposite in the x-direction along a plane, and constant beyond that plane.   
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Figure 3 – 22: Diagram representing the case of a planar sheet of vorticity (blue) in 

a domain. 

In this case, a vorticity sheet with a vortex strength of 100.0 was created.  The 

parallel velocities to this sheet are easy to derive from this vortex strength, as the 

velocities on either side of the sheet are constant.  From the definition of the calculation 

of the vorticity, it can be shown that the exact solution is -88.35 at the left of the vortex 

sheet, and +88.35 on the right. 

Using the numerical Biot-Savart law on this test case produces the expected 

velocity field, but only to an extent.  As with the line vorticity, the solution generated by 

the modified Biot-Savart requires manipulation of the σ constant in order to correct the 

near-vorticity velocities.   It was discovered in performing this validation that the value 

of σ in order to produce the expected result was different than that of the single line 

vorticity.  The value of C required in the planar vortex sheet is close to 0.5.   
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The planar sheet case also emphasizes the importance of the span used when 

performing the numerical Biot-Savart.  Figure 3-23 shows the results of the planar case 

taken with different spans, with the constant value C = 0.5.  While in theory it would be 

best to use an infinite span to arrive at the correct solution, there exists a steep cost in 

computational time and resources that incurs with an increase in the span.  Therefore it 

follows that there is a span where the error between the result and the expected result is 

acceptably small, with the knowledge that with infinite time and computational 

resources, the solution would improve.  

 
Figure 3 – 23:  Planar Velocities as a result of a vortex sheet. 

One last validation case that was examined added a level of complexity to the 

velocity prediction.  The resulting velocity fields, both graphical showing span 

dependence (a) and magnitude vectors indicating magnitude and direction (b), are 

shown in Figure 3 - 24.  While more of a test case then validation, it was designed to 
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examine how well it would predict the result of a common phenomena, that of a vortex 

tube.  Commonly approximated in nature in examples of solid body rotation, it consists 

of a tube of constant vorticity acting in the direction of the tube.  Such a condition 

produces a linear velocity profile within the tube, and a 1/r decay profile at and beyond 

the outer wall of the tube.   

A.)  

B.)  
 

Figure 3 – 24:  Tube of vorticity results.  A.) V-velocity along a line in the x-
direction.  B.) Velocity vectors showing both magnitude and direction. 
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Figure 3 – 25:  Error resulting from different values of C in the calculation of σ. 

Finally, the numerical Biot-Savart method was applied to vorticity fields 

developed from actual velocity fields.  Initially it was believed that the value of σ 

should be between to two values experienced by the line and planar vorticity cases.  

However, this proved not to be the case, as using an arbitrary value between the two 

yielded fairly significant errors between the resulting velocity field and the field that 

was used to generate the vorticity field.  It was determined that the value of the constant 

C that generated the closest solution to the supplied velocity fields was 0.5575.  This 

was determined by examining the root mean square error between the initial velocity 

field and the Biot-Savart calculated velocity field.  As shown in Figure 3 - 25, it reaches 

a minimum at the value of 0.5575.  This value was thought to be appropriate, as it could 

be conceived that with increasing complexity of the vorticity field, the value of C in σ 

increases as well.  The value of 0.5575 is also close to the value of 3
π which makes σ  

box diagonal length over π.  This observation holds for this simulation only, because an  
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uniform mesh size was used, where x y z∆ = ∆ = ∆ .  It is not known if this relationship 

extends to non-uniform meshes. 

 
Figure 3 – 26: Velocity comparison of the actual resulting velocity field and that 

generated from the vorticity. 

A span study was performed, to investigate the influence of the span used in the 

velocity field.  While the solution did improve with increasing span size, its effect was 

small compared to changing the value of σ.  Because the time it takes to perform the 

Biot-Savart method scales cubicly with the span size, the span used in the following 

calculations is 32 .  Figure 3 - 26 shows results of the modified Biot-Savart 

method, showing a line of velocity through the turbulent field.  It is worthy to note that 

this comparison is of v-velocities generated after the implementation of the wall.  The 

red line is the resultant velocity field after the wall was applied using the projection 

method, and the blue line was from the modified Biot-Savart Law, described above. 

32 64× ×

With the ability to generate velocity fields from vorticity fields, it is now possible 

to examine how alterations of vorticity fields affect the velocity results.  More 

 64 



www.manaraa.com

specifically, it is possible to modify the vorticity field as is expected in the presence of 

the wall, and generate a velocity field result.  The presence of the wall induces image 

vorticity on the other side of the wall, and per our model explained earlier in this thesis; 

we can modify the vorticity beyond the wall to represent this.  When implementing this, 

it produces similar results to those generated by solving the Navier-Stokes with the wall 

boundary conditions.  This comparison is shown in Figure 3 - 26. 

Figure 3 – 27:  Reflected, semi-periodic domain. 

By altering the modified Biot-Savart method, we can examine the vorticity 

contributions to the predicted velocity.  The idea is to examine the contribution from the 

vorticity on the flow-field side of the wall, and the contribution from the vorticity 

beyond the wall.  This is shown by the illustration in Figure 3 - 27.  The original domain 

is outlined by the solid black square, and periodic domains are outlined by dashed lines 

(more on that later)  Looking at Figure 3 – 27, the vorticity to the left of the wall (solid 

black vertical line) would be in one summation, and the vorticity to the right of the wall 

would be a separate summation.  By performing separate summations of those groups of 

vorticity, it becomes easy to determine the effect of the wall, and how far into the flow 

field it acts.   

It is important to note the nature of periodic vorticity fields employed when 

performing these summations.  As shown in the above figure, the left hand side (beyond 
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the wall) vorticity is the reflection of the original domain, but only with vorticity that 

has a component perpendicular to the wall.  In the case of the wall acting in the x-z 

plane, the vorticity acting in the x- and z-direction would both be reflected and negative 

of on the other side of the wall.  However, the y-vorticity would be only reflected.   The 

sign remains unchanged, since it contains velocity components parallel to the wall, and 

thus the wall boundary condition has no effect on it. 

Once the wall boundary condition is applied to the vorticity fields, they are made 

periodic, but only on either side of the wall, as shown in Figure 3 - 27.  All of the 

domains beyond the wall are periodic in and amongst themselves, up to the wall.  All of 

the domains on the original side of the wall are also periodic among themselves, up to 

the wall.  For the cells at the wall, the boundary condition that is set there is that the 

vorticities containing wall-perpendicular velocities ( ,x zω ω ) are set to zero because of 

the wall boundary condition.  For the purposes of this simulation, the vorticity 

containing only wall-parallel velocities ( yω )  was left unaltered at the wall. 
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Figure 3-28 shows a slice perpendicular to the wall of the v-velocity, the left 

image being that of the beyond-the-wall vorticity contributions, and the right image 

being the velocity contributions from the flow-field on this side of the wall. 

  
Figure 3 – 28:  The v-velocity contributions from the vorticity beyond the wall (left 

image), and contributions of the vorticity to the existing side of the wall (right 
image).  The wall is located at Y = 0. 

 

Performing these split-summations, it allows us to decompose the correlations 

and our proposed correlation model in order to see which contributions have the 

greatest effect in the development of the after-wall condition.  Using the notation ‘left’ 

to refer to the velocity contributions from the vorticites beyond the wall, and ‘right’ to 

denote the velocity contributions from vorticities on this side of the wall, we can 

perform correlations of the right-right (RR) velocities, the left velocity contributions 

correlated with the right velocity contributions (LR), the counter right-left correlations 

(RL), and the two beyond the wall contributions, left-left (LL).  These should all sum up 

to the full correlation field, as shown in equation (3.9).  These correlation contributions 

are shown in figure 3-29. 
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 (3.9) 

  
 

  
Figure 3 – 29:  Decomposition of the correlations.  Clockwise, from top left, the 

RR correlation, the RL correlation, the LR correlation, the LL correlation.  In each 
image, the wall is located at the top. 

 

 
Planar slices of these constitutive correlations are shown in Figure 3-29. In 

performing these correlations, it is of interest to examine the parts of the correlations 

from before the implementation of the walls that are involved in the predictive model 

covered earlier in this thesis.  Looking at Figure 3-12, it is of interest to examine what 

constituent correlation parts contribute to the red line, denoted as ‘difference’, that alter 

the original correlation to yield the resulting correlation due to the wall.  In examining 

what part of the correlation contributes to this part, it is clear to see that original 

correlation, beyond the wall location, is what comprises the ‘difference’.  In examining 

the constitutive parts of the correlations performed before the addition of the walls, and 
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blanking out the values that do not contribute to the ‘difference’, and interesting 

development arises.   

As shown from Figure 3-29, the only correlations that affects the predictions of 

the after-case or those that are correlated with the flow field-side of the wall.  In each 

image, the wall is at the top.  Therefore, these are the contributions from the correlations 

that would comprise of the reflected portion that modifies the original correlation to 

produce the after-wall correlation condition.   Any correlations performed that involve 

contributions from beyond the wall have little effect on the final solution, as their 

contributions are two or more orders of magnitude small than the others. 

 

 

3.5 Low Reynolds Number Strain Flow 

This section highlights the efforts spent in determining why some of the low 

strain rate cases performed by Jay Gadebusch were not as expected when comparing 

against the results of Hallbäck.  While his results for the higher strain rate axisymmetric 

contraction cases followed closely the results of Hallbäck, the lower strain rates did not.  

These cases are of interest for their ability to tune turbulence models.  When these 

peculiar results came to light, analysis was performed using the initial conditions from 

Professor De Bruyn Kops work[2]. 
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It was initially thought that there was a misinterpretation of the definition of the 

strain rate, and that it was off by a factor of 2, or 2 .  In Hallbäck and this work, it was 

used that 2 ij jiS S S= .  Figure 3-30 shows the efforts of this investigation.  The dashed 

lines represent the data from Hallbäck, and the solid lines represent the data from the 

simulations performed by Gadebusch. 

 
Figure 3 – 30: R11, R22, R33, normalized by the initial kinetic energy versus non-

dimensional time, St.  

It is shown in figure 3-30 that while it was initially suspected the strain rate was 

the cause of the low strain rate issue, it did not solve the problem.  At this point, the 

focus shifted onto the initial conditions being used.  Having noticed the “skewness” 

from work with the two-point correlations, it was thought that a slight inherent shear in 

the initial velocity fields might cause the axisymmetric contraction cases to not agree 

with Hallbäck’s data at low strain rates.  As the strain rate decreases, the results would 

show an increased effect of the inherent strain in the flow, even if it was small in 
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magnitude compared to the strain applied to the flow.  At the smallest strain rate, the 

effect of the inherent strain might be substantial enough to cause a noticeable change in 

the results, compared to agreement with Hallbäck’s data. 

An investigation into the initial conditions was performed, using the full 

 fields, looking at planar averaged velocities in the z-direction.  The 

results of this analysis are shown in figure 3-31.  While the global average velocity is 

equal to zero, the individual planar averages are not, as shown in the figure.  

Furthermore, it is believed that there can almost be drawn a periodic oscillating line 

though the average velocities that would indicate a shearing between the upper half of 

the domain (in the z-direction) and the lower half of the domain.  In order to account for 

this fact, Gadebusch had averaged both the top and bottom half of the domain, and that 

average was subtracted from both halves respectfully.  This introduced strain into the 

field, and in turn may have been the cause behind the discrepancy between the 

agreement of Gadebusch’s results and those of Hallbäck in the high and low strain rate 

cases.   

768 768 1536× ×

 71 



www.manaraa.com

 

 
Figure 3 – 31: XY-Planar velocity averages of the u- and v-velocity fields in the z-

direction. 

In an effort to account for the cuboid structure of the domain without 

introducing the strain associated to two large averaged values being subtracted across 

the mid-z-plane,  it was attempted to find a continuous function in the form of equation 

(3.10) to subtract off from the fields.  This function would be made periodic in the 

domain, to ensure that on average no velocity was leaving the box, thus ensuring 

incompressibility. 

 2 2cos sinz zA B
L L
π π⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝

⎞
⎟
⎠

 (3.10) 

 
In the above equation, L is the length of the domain.  A and C were empirically 

determined, based off of the FFT of the planar averaged velocity fields, A is based on 
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the real component, and C is based off of the imaginary component of the first wave 

number (the lowest frequency oscillating mode).  The results for the v-velocity 

alteration are show in figure 3-32.  The dash-dotted line has this lowest mode removed. 

 
Figure 3 – 32: Planar velocity averages of the v-velocity fields in the z-direction 

(solid), the correcting function (red dashed), and the resulting corrected profile (blue 
dashed) 

The value for the real component A in this case was 0.33108, and the imaginary 

component B was 2.414665.  While this improved the fields, it did not improve the 

Hallbäck results or the skewness in the two-point correlations.  It was at this point that 

new initial conditions were desired to be created. 

 

3.6 New Initial Conditions 

The first attempt at the generation of turbulent initial conditions was the 

randomly located and oriented jets in a domain, as described in section 2.4.  While this 
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method generated fairly isotropic fields, it lacked the physically realizable generation 

that was desired.  The jets were only 1 cell in diameter, and as the domain increased, the 

effects of the jets decreased.  Figure 3-33 shows some early results of the jets . 

 
Figure 3 – 33: Cross sections of velocity fields showing the u, v, and w velocity 

fields, from left to right, respectfully. 

As the jet fields progressed in time, jets would turn off and new jets would turn 

on, thus increasing the randomness of the flow within the domain.  The flow in the 

domain is periodic, such that there are no complicated boundary conditions due to any 

walls. 
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As mentioned above, while the jets were mildly successful in generating initial 

fields, they failed to develop in to fields resembling figure 1-1 as the domain size 

increased.  However, as expected, there were promising trends that led to development 

of the box technique.  These trends included the increasing of the turbulent Reynolds 

number of the flow as time progressed and the mixing continued.  An example of how 

the turbulent Reynolds number, the kinetic energy, and the dissipation evolve in time is 

shown in figure 3-34.  Each “step” is due to a higher jet acceleration being imposed. 

 
Figure 3 – 34: Turbulent Reynolds number (Ret), Kinetic Energy (TKE), and 

Dissipation (Eps) vs. time (in seconds). 

In the figure, the different styles of dashed lines indicate different run sequences 

of the field generation.  For the initial time period (solid) the acceleration of the jets was 

set for a low value, around 2000 cm/s.  The second initialization of the flow, started 

from the restart files of the first run (thick dash), had a higher acceleration, of 4,000 

cm/s.  This resulted in a higher turbulent Reynolds number, kinetic energy, and 
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dissipation.  For the third (thin dotted) and fourth (dash-dotted) continuations of the 

field, the accelerations was increased to 6,000 cm/s and 8,000 cm/s respectively.  Both 

increases in acceleration of the jets yielded increases of all three turbulent flow 

characteristics, as shown. 

While the jets did not result in exactly the flow fields that were desired, they 

yielded insightful results.  An important lesson learned was the necessity of a method 

for checking the location of the jets, and ensuring that new jets were not placed too 

closely to other jets.  Having jets placed too close to other jets create areas of diverging 

flow, which would lead to un-desirable or non-physical results. 

After moderate success in the creation of fields using randomly oriented jets, a 

different and more physically realistic method was considered.  A field of stationary 

solid boxes is randomly allocated in a domain.  The boxes have no-slip boundary 

conditions, and are impermeable.  A pressure driven flow is then introduced and forced 

past the field of boxes for a set amount of time in a random direction.  A pictorial 

example of what the domain looks like is shown in figure 3-35. 

In going about generating these new initial conditions, a varied number of 

parameters needed to be set.  These parameters include the number of boxes, the size of 

each individual box, the magnitude of the pressure driven acceleration of the flow, and 

the time duration of the pressure driven flow in any particular direction.  All these 

different variables combine to produce a field of turbulent flow.   
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To begin with, the number and sizes of the boxes in the flow are related, in the 

sense that too many boxes or boxes too large in magnitude would not produce desirable 

flow characteristics.  As this code is parallelized, these parameters are global 

parameters.  For the initial conditions generated in this thesis, the number of boxes 

chosen is 1000, with each box being 5 grid points cubed.  In the fields generated, which 

are 128 x 128 x 256 grid points in dimension, this means that the boxes placed in the 

fields account for close to 3% of the total domain volume.  The boxes are evenly spread 

out among each sub-domain and are randomly positioned within each sub-domain in 

order for a random distribution of boxes to be ensured in the entire domain. 

 
Figure 3 – 35:  Simplified diagram of flow field with cubes placed randomly inside. 

This brings up an important note regarding the nature of random number 

generation in a parallel environment.  When using the inherent random number 

generated within the Fortran libraries, it makes use of a seed number to determine 

where in it’s explicit list of random numbers it should begin.  In order to truly 
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‘randomize’ the numbers chosen by the random number generator, it is possible to call a 

seed randomizing function that chooses a seed value based on the date and time the 

function was called.  While this is an intelligent function to use in serial cases, issues 

were encountered in the parallel environment.  When running the code, the inherent 

seed randomizing function would be called on each processor within such a small 

timeframe that it would return an identical seed number for most, if not all of the 

individual sub-domains.  This led to the development of the boxes being put in locations 

that were identical sub-domain to sub-domain, leading to the flow field being nearly 

periodic within the domain, which is not desirable. 

The random number generator operates by using two seed values to produce 

random numbers with a period of 1018, resulting in a field of uniform distribution 

between 0 and 1.  The first of the two integer seed values can be set between 1 and 

2,147,483,562.  The second integer seed value can have the values between 1 and 

2,147,483,398.  The use of these two seed values ensures that the random number 

generator is initialized by two 31-bit seeds.[14, 15] 

In order to prevent the parallel environment from generating identical seed 

numbers across different processors, separate ‘seed lists’ were created a priori.  Each 

‘seed list’ contained 512 random number pairs generated at different times.  These 

numbers would serve as the seed for the sub-domains.  Each sub-domain would call its 

corresponding seed, i.e. sub-domain numbered ten would use the tenth number pair on 

the list as its seed value.  This method ensures that no two sub-domains are similar in 

their box distribution.  
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With the boxes set in the flow field, the generation of initial conditions can begin.  

The initial period involves the flow passing over and around the boxes.  The initial 

conditions developed ran for 5.0 seconds, with the pressure gradient changing direction 

every 0.5 seconds.  This was deemed suitable time for the boxes to cause the formation 

of structures in the flow by the time the flow next changed.  

After the flow has been progressing for the 5 seconds, it becomes necessary to 

terminate the pressure gradient.  Upon doing so, the flow is still permitted to flow past 

the boxes within the flow, and it slows down with the removal of the pressure gradient. 

After that time, for the purposes of this thesis, the field was allowed to decay in 

an effort to examine the decay exponent, covered later in this section.  At his point, the 

boxes are removed from the flow, and replaced by zero-velocity fluid.  The flow 

characteristics at this point are dominated by decaying isotropic turbulence, which 

allows for the determination of the decay exponent. 

At the time of this thesis, the code has reached a level of development that 

domains of any cubic size and desired turbulent Reynolds number can be created.  

Modification of the kinematic viscosity is the primary method of altering the flow 

characteristics of interest, such as the kinetic energy and turbulent Reynolds number.  

Other methods that produce similar results would be increasing the pressure gradient 

applied to the flow, or modifying the number of boxes.   

An example of the resulting initial condition fields are shown below in figure 3-

36.  The field is isotropic and divergence free.  The method of how the fields were 

created is quantifiable.  The flow has many different scales associated with it, from the 

pressure driven flow creating large scale structures that drives the small scale 
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dissipation.  These traits are shown through the kinetic energy present in the flow, and 

the dissipation, shown later.  The initial conditions have a range of turbulent Reynolds 

numbers, from about ReT =  49 to ReT = 113.   

 
Figure 3 – 36: Full field of u-velocity contours. 

Two-point correlations were performed on the initial conditions.  The three 

correlations shown in figure 3-37 each were performed on separate initial conditions, 

and show two important results.  The first is that while each two-point correlation could 

be considered skewed slightly in one direction or another, on average they are 

uniformly isotropic.  The second important result is that the two-point correlation 

generated by the box method is less skewed than the original initial conditions used 

previously in this work. 

One last comment on the development of the new initial conditions is how the 

turbulent characteristics develop over time.  Unlike the initial condition generation 

using the jets, the imposition of boxes in the alternating pressure driven flow produces 
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much more violent swings in both the energy production and dissipation.  This is to be 

expected, because of the nature of the developing flow.  When the flow changes 

direction, you would not only have the tiny structures still in the flow from the previous 

direction, but you would also be creating new structures resulting from the flow past the 

boxes in the new flow direction. 

 
Figure 3 – 37: Resulting R22 Correlations, looking at a X-Z slice in the center of the 

correlation field. 

3.7 Decay Exponent 

In analyzing the development of the initial conditions from physically realizable 

conditions, it is of interest to examine the decay exponent.  Figure 3-38 shows the 

results from nine different runs, using different flow orientations, averaged together.  

While this figure may seem noisy, it serves to highlight the widely varying value of the 

decay exponent for each instance of turbulent flow.   
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The field was generated for a total of 5.0 seconds, and then it was allowed to 

relax and adjust for the removal of the pressure-gradient driven flow, and then decay 

afterwards. Initially, the remaining flow fills in the scattered volumes where the boxes 

had been, creating an initial spike in energy and dissipation, which promptly ends after 

approximately 3.0 seconds, depending on the initial condition.  As the flow begins to 

slow down due to energy transfer from the larger scales of motion to the smaller scales, 

and then to heat dissipations, the decay exponent hovers around the high Re limit of 1.2, 

and then increases to a value around 2.0, which is the box-constrained limit.   

 
Figure 3 – 38:  Decay Exponent, n, vs Time (s) of various initial 

conditions decaying.  
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When looking at the decay exponent, it is important to consider average the 

turbulent characteristics of the flow.  As with most turbulent properties, it would be 

foolish to consider the results of a single instance of turbulence.  Averaging the flow 

using various methods and techniques has much more significance, and is done often 

 
Figure 3 – 39:  Kinetic Energy vs. Time of decaying flow (top); 

Dissipation vs. Time of decaying flow (bottom). 
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when trying to characterize turbulence.   Therefore, it is important when examining the 

decay exponent that an average of all the flows is generated.  However care must be 

taken when performing this average, and what is averaged in what order.  Previously in 

the thesis proposal, the decay exponent was averaged amongst four different decay 

exponents, taking the average at each instant in time.  

While this was deemed an appropriate method at the time, it was later revisited, 

and the more appropriate method is to average the relevant raw turbulent statistics, the 

kinetic energy and the dissipation.  The kinetic energy vs. time for each initial condition 

in its decay period is shown in figure 3-39.  Also shown in figure 3-39 is the average of 

all of the kinetic energy.   

Figure 3-39 also shows the dissipation present in each initial condition, and the 

average of each, versus time.  From the averaged kinetic and averaged dissipation, the 

 
Figure 3 – 40:  The decay exponent vs. time, showing the difference between the 
averaging schemes.  The theoretical k2 and k4 limits for high Reynolds Number 

decay are shown by the fuchsia lines. 
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average turbulent Reynolds number is calculated for the decay period, as well as the 

average decay exponent.  It is important to note the difference in performing an average 

of the turbulent statistics instead of the final decay exponent, and this is shown in figure 

3-40.  The resulting decay exponent from averaging the turbulent characteristics is 

higher than simply taking the average of each decay exponent at each point in time Also 

in the figure are the theoretical limits for both the k2 and k4 limits for high Reynolds 

number decay. 

 
Figure 3 – 41: The turbulent decay exponent vs. Turbulent Reynolds Number.  The 

theoretical k2 and k4 limits for high Reynolds Number decay are shown by the 
fuchsia lines (1.2 is the bottom limit of the figure). 

It is now possible to look at how the turbulent decay exponent varies with the 

turbulent Reynolds number.  This is shown in Figure 3-41.  As would be expected, the 

decay exponent is lower in the higher Reynolds number regime, and has a high value in 

the lower Reynolds number regime.  The main characteristic of importance, however, is 
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that it does not appear to asymptote towards any particular value, as the theory would 

suggest.  This brings forth an important consideration in regards to the turbulent decay 

exponent.  It may be the case that attempting to reduce decaying isotropic turbulence to 

a single value may prove to be an overzealous simplification.  In knowing exactly how 

the initial conditions were created, the findings presented here may be the basis for a 

more detailed study on whether or not the assumptions made in determining a single 

value for the turbulent decay exponent assume too much. 
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CHAPTER 4 

CONCLUSIONS 

 
Direct numerical simulations of turbulent velocity fields, wall boundary 

conditions were applied, and the resulting velocity fields were examined using two-

point correlations.  This thesis initially aimed at decomposing the two-point correlations 

into their constitutive components to predict the statistical behavior of the velocity 

fields at short timescales with the wall boundary condition applied.  In the course of 

examining this, however, a simple and elegant model was developed, for the prediction 

of the two-point correlations of the velocity fields after the imposition of the wall.  This 

reflection technique accurately predicts any two-point correlation computed with wall-

perpendicular velocities.  More intriguing, it predicts the behavior of a non-linear 

quantity with a linear operation. The model, in its current state, does not accurately 

predict correlations computed with only wall-parallel velocities.  In these situations, the 

correlations have less of an impact from the wall, as a free-slip boundary condition 

exists for the velocity parallel to the wall. 

Taking another approach at solving for the wall-parallel correlations, the 

vorticity of the turbulent velocity fields were examined.  While calculating the vorticity 

in the staggered mesh velocity field is relatively easy, deriving velocity from the 

vorticity fields was not.  In this work, we were able to develop and validate a modified 

Biot-Savart method that can closely approximate the velocity field corresponding to a 

vorticity field.  Using these vorticity fields, it was possible to duplicate the wall 
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boundary condition, and reproduce the velocity fields as they are after the wall 

boundary condition was imposed solely in the velocity fields.  Furthermore, in 

decomposing the two-point correlations, into its contributions from its pre-wall 

velocities from either side of the wall location, it was shown that only the sub-

correlations involving velocities on the proper side of the wall contribute significantly 

to the correlations as they are after the wall was imposed.  This explains why the linear 

operation is sufficient. 

The last major component to this thesis is the generation of new initial 

conditions.  The generation of turbulent initial conditions is challenging to do properly, 

and more so to simulate real world situations.  This thesis covers the method of 

turbulent field generation, and how it was aimed at maintaining a degree of physical 

realizability.  Multiple initial conditions were developed, with varying turbulent 

Reynolds numbers.  More importantly, the method for the creation of such initial 

conditions was developed as to allow future researchers to create their own initial 

conditions, for whatever area of study was needed (higher Reynolds numbers, Low 

Reynolds numbers, etc.)   

In developing these new initial conditions in house, we can examine the decay 

exponent associated with decaying isotropic turbulent fields.  There is a wide disparity 

in what the value of this exponent should be, and that is largely due to the variations in 

initial conditions used.  While we arrive at values of the decay exponent in the expected 

range of values, our results lead us to a conclusion with more questions than the 

answers we had hoped for.  The generalization of such a complex flow to one variable 

may not necessarily be the best way to quantify its behavior.  In knowing exactly how 
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the initial conditions were created, and that they were made to mimic a physically 

realizable condition, allows for further efforts to be made to develop the theory on what 

the value of the decay exponent should be, or if it should be a single value at all. 
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